No posting today, and getting hotter.

イメージ 1

The 2010 Nobel prize ゛Making new things゛, Oct 9th 2010 P94 N1P12 5 ノーベル化学物理学賞

Carbon is the basis of more molecules than all the other element put together. It is, though, surprisingly inert. A lump of graphite or a diamond will sit happily on a laboratory bench without bursting into flames, or even rusting, and is impervious to the action of water. Better ways of manipulating the element are therefore welcome, particularly as organic chemicals, as carbon compounds are known whether or not they they have ever been part of a living creature, form the basis of much human industry.
That this year's Nobel prize for chemistry has been awarded for a better way of synthesising organic compounds is thus appropriate. The winners, Richard Heck, Ei-ichi Negishi and Akira Suzuki, used palladium as a catalyst.
The ball was set rolling in the 1960s by Dr Heck, of the University of Delaware. He employed palladium to promote reactions involving alkenes - molecules in which two carbon atoms are joined by what is known as a double bond (each carbon atom can form up to four bonds with other atoms, which is why there are so many types of organic compound). Dr Negishi, of Purdue University, then went on to improve the process, by involving zinc-based compounds in addition to the palladium. Dr Suzuki, of Hokkaido University, applied the finishing touches by adding boron compounds to the mix. The result is a set of chemical processes that are used regularly to make a host of drugs, such as Taxol, an anticancer agent, and other complex chemicals, like fungicides.
The physics prize was also awarded for what is, at bottom, a piece of carbon chemistry. This was the discovery of graphene, a form of carbon one atom thick. Andre Geim and Konstatin Novoselov, of the University of Manchester, made graphene in 2004 using what may be the simplest experiment ever win a Nobel prize: they peel off the surface of a piece of graphite using sticky tape.
Graphene is now touted as a wonder material. It is electrically and thermally conductive, is strong and is transparent. It is thus proposed for applications that range from lightweight materials for computers. Its thinness, too, gives it unusual electrical properties. One of these is that if it is placed in a magnetic field it exhibits a phenomenon known as the relativistic quantum Hall effect. This (put your analyst on danger money) means magnetised graphene is inhabited by quasiparticles which have the quantum properties of real particles (electrons, protons and so on) without actually being particles. That is the sort of thing which might lead to truly unexpected applications.
A word of caution may be in order. The 1996 chemistry prize was also awarded for a new form of carbon, buckminsterfullerene. Buckyballs, as they became known colloquially, are football-shaped molecules made of 60 carbon atoms linked by single and double bonds. Buckminsterfullerene, too, was promoted as a wondersubstance when it was discovered. Both it and its descendants, so-called buckytubes, which are cylindrical molecules made of pure carbon, are still much admired, but they have not yet lived up to their promise.
In truth, graphene does look a more plausible candidate for commercialisation than buckminsterfullerene. Those electrical properties are truly exciting, and something that can be turned into a film which is both strong and thin has a lot of potential applications. But there's many a slip between the cup and the lip, and no important graphene products are yet on the market.